Article 7213

Title of the article

NUMERICAL METHODS OF OPTIMAL ACCURACY FOR WEAKLY SINGULAR
VOLTERRA INTEGRAL EQUATIONS 

Authors

Boykov Il'ya Vladimirovich, Doctor of physical and mathematical sciences, professor, head of sub-department of higher and applied mathematics, Penza State University (Penza, 40 Krasnaya str.), math@pnzgu.ru
Tynda Aleksandr Nikolaevich, Candidat of physical and mathematical sciences, associate professor, sub-department of higher and applied mathematics, Penza State University (Penza, 40 Krasnaya str.), tynda@pnzgu.ru
Krasnoshchekov Pavel Sergeevich, Doctor of physical and mathematical sciences, professor, full member of the Russian Academy of Sciences, principal scientist, Computing center named after A.A. Dorodnitsyn of the Russian Academy of Sciences (Moscow, 40 Vavilova str.), math@pnzgu.ru 

Index UDK

517.392 

Abstract

Objective: the main aim of this paper is the construction of the optimal with respect to accuracy order methods for weakly singular Volterra integral equations of different types. Methods: since the question of construction of the accuracyoptimal numerical methods is closely related with the optimal approximation problem, the authors apply the technique of the Babenko and Kolmogorov n-widths of compact sets from appropriate classes of functions. Results: the orders of the Babenko and Kolmogorov n-widths of compact sets from some classes of functions for one-dimensional and multidimensional cases are evaluated. The special local splines realizing the optimal estimates are also constructed. The optimal (with respect to accuracy order) spline-collocation methods are suggested. Conclusions: the obtained theoretical estimates are verified by the numerical examples for 2-D
Volterra integral equations adduced in the paper. 

Key words

Volterra integral equations, optimal algorithms, Babenko and Kolmogorov n-widths, weakly singular kernels, collocation method. 

Download PDF
References

1. Baker C. T. H. J. Comp. Appl. Math. 2000, vol. 125, pp. 217–249.
2. Brunner H. Collocation methods for Volterra integral and related functional differential equations. Cambridge: Cambridge University Press, 2004.
3. Brunner, H., Pedas A., Vainikko G. Math. Comp. 1999, vol. 68, no. 227, pp. 1079– 1095.
4. Diogo T., McKee S., Tang T. Proc. Roy. Soc. Edin. 1994, vol. 124A, pp. 199–210.
5. Tynda A. Comp. Meth. Appl. Math. 2006, vol. 6, no. 4, pp. 436–442.
6. Tynda A. N. Bulletin of Middle-Volga Math. Society. 2008, vol. 10, no. 2, pp. 68–78.
7. Verlan A. F., Sizikov V. S. Integral equations: methods, algorithms, programms. Kiev: Naukova Dumka, 1986.
8. Vainikko G. M. Mat. Sbornik. 1989, vol. 180, no. 12, pp. 1709–1723.
9. Boykov I. V., Tynda A. N. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki [University proceedings. Volga region. Physics and mathematics sciences]. 2013, no. 1, pp. 61–81.
10. Boikov I. V. The optimal methods of approximation of the functions and computing the integrals. Penza: Penza State University Publishing House, 2007, 236 p.
11. Boikov I. V. Computational Mathematics and Mathematical Physics. 1998, vol. 38, no. 1, pp. 21–30.
12. Boikov I. V. Izvestia Vuzov. Matematika. 1998, no. 9, pp. 14–20.
13. Boikov I. V., Tynda A. N. Differential Equations. 2002, vol. 38, no. 9, pp. 1305–1313.
14. Babenko K. I. Theoretical Foundations and Construction of Numerical Algorithms for Problems in Mathematical Physics. Moscow: Nauka, 1979.
15. Traub J. F., Wozniakowski H. A General Theory of Optimal Algorithms. New York: Academic Press, 1980.
16. Dziadyk V. K. Introduction in Theory of Uniform Approximation of the Functions by Polynomials. Moscow: Nauka, 1977, 512 p.
17. Boikov I. V., Tynda A. N. Proc. of the ICCM (Novosibirsk, 2002). Novosibirsk, 2002, pp. 381–388.

 

Дата создания: 27.01.2014 11:24
Дата обновления: 21.07.2014 08:41